

1
1

Learning from Interpretation Transitions Using Differentiable Logic Programming Semantics

Kun Gao¹, Hanpin Wang^{1, 2}, Yongzhi Cao¹, Katsumi Inoue³ ¹ Peking University 2 Guangzhou University ³ National Institute of Informatics

2021/10/25

Background knowledge

 \triangle A normal logic program is a finite set of rules that satisfies the following form:

$$
h \leftarrow l_1 \wedge l_2 \wedge \cdots \wedge l_n,
$$

where the *li*'s are **literals** and *h* is the head atom. Given a logic program *P*, the set of all atoms (ground atoms) in *P* is called a **Herbrand base** and is denoted as *BP*.

v An interpretation of a logic program is a subset of *BP*. Given a normal logic program *P* and $BP = \{p_1, \ldots, p_n\}$, an interpretation vector is denoted as $v = (v_1, \ldots, v_n)^T \in \{0, 1\}^n$.

 \triangleleft Given a propositional logic program *P*, the immediate consequence operator $T_P: 2^{B_P} \rightarrow 2^{B_P}$ is defined as follows:

$$
TP(I) = \{head(r) \mid r \in P, body^+(r) \subseteq I, body^-(r) \cap I = 0\}
$$

The definition of the learning task

- \triangle Input: the pairs of interpretation transitions (*I, J*), where $J = TP(I)$.
- v Output: the logic program *P*.

Normal matrices

Given a normal logic program, we use **normal (NOR) matrix** to represent it. The normal matrix of a logic program M_P^{NOR} and the pairs of interpretation vectors meet: $v_o = \theta(M_P^{NOR} v_i)$, where the threshold is defined as follows:

$$
\theta(x) = \begin{cases} 1 & \text{if } x \ge 1; \\ 0 & \text{otherwise.} \end{cases}
$$

The denominator of the fraction, corresponding the literal
p, is the number of literals in the conjunctive clause with
the least literals that appear in the corresponding rule

$$
\begin{array}{ccc}\np & \text{if } q \text{ is } n \text{ is the same.} \\
\theta(x) = \begin{cases} 1 & \text{if } x \ge 1; \\ 0 & \text{otherwise.} \end{cases} \\
\text{the least literals that appear in the corresponding rule} \\
P \leftarrow (p \land q \land \neg r) \lor (p \land \neg q) & \text{otherwise.} \\
\theta(x) = \begin{cases} \n\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text{ is the same.} \\
\frac{1}{2} & \text{if } q \text{ is } n \text
$$

6

We use a differentiable function *ϕ* to replace the function *θ* :

$$
\phi = \frac{1}{1 + e^{-\alpha x}}
$$

7

 \cdot We define a differentiable formula to represent the immediate consequence function *TP* and the loss function:

$$
\overline{\mathbf{v}}_o = \phi(\overline{\mathbf{M}}_P^{NOR}\mathbf{v}_i - 1),
$$
\n
$$
\mathbf{loss} = \lambda_1 \cdot \left\{ H(\mathbf{v}, \overline{\mathbf{v}}) \right\} + \lambda_2 \cdot \sum_{c=1}^{m} \sum_{b=1}^{2n} \overline{\mathbf{M}}_P^{NOR}[c, b],
$$
\n
$$
\mathbf{H} \text{ is the cross-entropy}
$$
\n
$$
\text{function}
$$

Meta-info learner

 \cdot Extract the number of non zero elements in every line, denoted as l_{n_k} , from the generated normal matrices.

$$
\mathbf{M}_{P}^{NOR} = \begin{array}{c} (p) \frac{1}{2} \frac{1}{3} & 0 & 0 \frac{1}{2} \frac{1}{3} \\ (q) \frac{1}{2} & 0 & \frac{1}{2} \end{array} \begin{array}{c} (p) \frac{1}{2} \frac{1}{3} & \frac{1}{3} \\ (q) \frac{1}{2} & 0 & 0 \end{array} \begin{array}{c} (p) \frac{1}{2} \frac{1}{3} \\ (p) \frac{1}{2} & 0 \\ (p) \frac{1}{2} & 0 & 0 \end{array} \begin{array}{c} (p) \frac{1}{2} \frac{1}{3} \\ (p) \frac{1}{2} & (p) \frac{1}{2} \\ (p) \frac{1}{2} & (p) \frac{1}{2} \end{array}
$$

Interpretation learner

 ◆ The number of rules *m* in a same head variable logic program is no larger than $C\left(l_{p_k}, \left\lfloor \frac{l_{p_k}}{2} \right\rfloor\right)$. \triangle For all $k \in [1, C\left(l_{p_k}, \frac{l_{p_k}}{2}\right)]$, learn the **same head variable (SHV)** matrix representing the k -th rule in the disjunctive normal form logic program.

Model: Learning SHV matrices

 \triangleq We set multiple trainable matrices M_P^{SHV} to represent the different disjunctive normal form rules in the logic program *P*.

$$
P: p \leftarrow r \wedge \neg p
$$
\n
$$
P: p \leftarrow r \wedge \neg p
$$
\n
$$
P \leftarrow
$$
\n<math display="block</math>

$$
\bar{\mathbf{v}}_o[k] = 1 - \prod_{c=1}^{C(L_{p_k}, \lfloor \frac{L_{p_k}}{2} \rfloor)} (1 - \phi(\sum_{b=1}^{2n} \overline{\mathbf{M}}_{P_k}^{SHV}[c, b] \cdot \mathbf{v}_i[b] - 1)), \ 1 \leq k \leq m.
$$

product t-norm

The loss function is:

$$
\text{loss} = \sum_{k=1}^m (\lambda_1 \cdot H(\mathbf{v}[k],\overline{\mathbf{v}}[k]) + \lambda_2 \cdot \sum_{c=1}^{C(L_{p_k},\lfloor \frac{L_{p_k}}{2} \rfloor)} (1 - \sum_{b=1}^{2n} \overline{\mathbf{M}}_{P_k}^{SHV}[c,b])).
$$

H is the cross-entropy function

Constrain the sum of each line of the SHV matrices to one.

Example:

Logic program: $p \leftarrow q \vee \neg p$

 $q \leftarrow \neg p$

(a) A logic program *P*

0	1	0	0
0	0	1	0
0	0	1	0

\n
$$
\times v_i \xrightarrow{\omega_i} \overline{v}_c[0]
$$

\n
$$
\times v_i \xrightarrow{\omega_i} \overline{v}_c[1]
$$

(b) Two SHV matrices to represent the logic prgoram *P*

Transferring steps:

- \cdot Generate bottom clauses according to the relational database using bottom clause positionalization algorithm¹;
- * Regard the bottom clauses as propositional logic programs, and make the first-order features as propositional variables;
- **❖** Generate pairs of interpretation transitions.

1 França, M. V. M., Zaverucha, G., & DAvila Garcez, A. S. (2014). Fast relational learning using bottom clause propositionalization with artificial neural networks. Machine Learning, 94(1), 81–104.

Example

- $\mathbf{\hat{F}} = \{ \text{mother}(\text{mom1}, \text{daughter1}), \text{ wife}(\text{daughter1}, \text{husband1}), \}$ wife(daughter2, husband2)},
- $\mathbf{\hat{P}} = \{motherInLaw(mom1, husband1)\}$
- $\mathbf{\hat{v}} \mathbf{N} = \{ \text{motherInLaw}(\text{daughter1}, \text{husband2}) \}.$

Generated bottom clause set (the depth of the variable is set to 1):

Results and the contract of th

Test the model on the incomplete and mislabelled datasets:

Figure: Mean accuracy of the logic program and the MSE of the predicted Boolean value with respect to different split rates and mislabeling rates of the fission dataset.

Results and the contract of th

Comparisons on the incomplete data Comparisons on the mislabeled data

Comparisons on the relational databases

rates

- \cdot D-LFIT is an inductive logic programming learner, which can learn propositional logic programs from **mislabeled** data or **incomplete** data.
- **❖** Through adopting the BCP algorithm, we can learn **first-order logic programs** from relational databases.
- **❖** D-LFIT is a robust, fast leaner, which can **curriculum learning strategy** to learn knowledge from data.
- \cdot We will devise more constrains to make the generated logic programs meet destinated formats.
- **V** We will apply the D-LFIT on other dataset such like knowledge graph.

Thanks for your attention!

