

Learning from Interpretation Transitions Using Differentiable Logic Programming Semantics

Kun Gao¹, Hanpin Wang^{1, 2}, Yongzhi Cao¹, Katsumi Inoue³ ¹ Peking University ² Guangzhou University ³ National Institute of Informatics

2021/10/25

Background knowledge

A normal logic program is a finite set of rules that satisfies the following form:

$$h \leftarrow l_1 \wedge l_2 \wedge \cdots \wedge l_n,$$

where the l_i 's are **literals** and h is the head atom. Given a logic program P, the set of all atoms (ground atoms) in P is called a **Herbrand base** and is denoted as **B**_P.

An interpretation of a logic program is a subset of *BP*. Given a normal logic program *P* and *BP* = {*p*1,...,*pn*}, an interpretation vector is denoted as *v* = (*v*1,...,*vn*)^T ∈ {0, 1}ⁿ.

★ Given a propositional logic program *P*, the immediate consequence operator $T_P: 2^{B_P} \rightarrow 2^{B_P}$ is defined as follows:

$$T_P(I) = \{head(r) \mid r \in P, body^+(r) \subseteq I, body^-(r) \cap I = 0\}$$

The definition of the learning task

- Input: the pairs of interpretation transitions (I, J), where J = TP(I).
- Output: the logic program P.

Normal matrices

Given a normal logic program, we use **normal (NOR) matrix** to represent it. The normal matrix of a logic program \mathbf{M}_{P}^{NOR} and the pairs of interpretation vectors meet: $\boldsymbol{v}_{o} = \theta(\mathbf{M}_{P}^{NOR}\boldsymbol{v}_{i})$, where the threshold is defined as follows:

We use a differentiable function ϕ to replace the function θ :

$$\phi = \frac{1}{1 + e^{-\alpha x}}$$

Figure: The curves of the function θ and $\phi(x - 1)$

 We define a differentiable formula to represent the immediate consequence function *TP* and the loss function:

$$\overline{\mathbf{v}}_{o} = \phi(\overline{\mathbf{M}}_{P}^{NOR}\mathbf{v}_{i} - \mathbf{1}),$$

$$\log = \lambda_{1} \cdot H(\mathbf{v}, \overline{\mathbf{v}}) + \lambda_{2} \cdot \sum_{c=1}^{m} \sum_{b=1}^{2n} \overline{\mathbf{M}}_{P}^{NOR}[c, b],$$
H is the cross-entropy function penalty term

Meta-info learner

Extract the number of non zero elements in every line, denoted as *l_{pk}*, from the generated normal matrices.

$$\mathbf{M}_{P}^{NOR} = \begin{pmatrix} p \end{pmatrix} \begin{pmatrix} p & q & r & \neg p & \neg q & \neg r \\ \frac{1}{2} & \frac{1}{3} & 0 & 0 & \frac{1}{2} & \frac{1}{3} \\ (q) & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ (r) & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{pmatrix} \xrightarrow{\mathbf{NOR matrix}} \text{The meta-information:}$$

Interpretation learner

The number of rules *m* in a same head variable logic program is no larger than C (l_{pk}, [^{lpk}/₂]).
 For all k ∈ [1, C (l_{pk}, [^{lpk}/₂])], learn the same head variable (SHV) matrix representing the *k*-th rule in the disjunctive normal form logic program.

Model: Learning SHV matrices

• We set multiple trainable matrices M_P^{SHV} to represent the different disjunctive normal form rules in the logic program *P*.

$$\bar{\mathbf{v}}_o[k] = \underbrace{1 - \prod_{c=1}^{C(L_{p_k}, \lfloor \frac{L_{p_k}}{2} \rfloor)} (1 - \phi(\sum_{b=1}^{2n} \overline{\mathbf{M}}_{P_k}^{SHV}[c, b] \cdot \mathbf{v}_i[b] - 1)), \ 1 \le k \le m.$$

product t-norm

The loss function is:

$$\text{loss} = \sum_{k=1}^{m} (\lambda_1 \cdot H(\mathbf{v}[k], \overline{\mathbf{v}}[k]) + \lambda_2 \cdot \sum_{c=1}^{C(L_{p_k}, \lfloor \frac{L_{p_k}}{2} \rfloor)} (1 - \sum_{b=1}^{2n} \overline{\mathbf{M}}_{P_k}^{SHV}[c, b])).$$

H is the cross-entropy function

Constrain the sum of each line of the SHV matrices to one.

Example:

Logic program: $p \leftarrow q \lor \neg p$

 $q \leftarrow \neg p$

(a) A logic program P

(b) Two SHV matrices to represent the logic prgoram *P*

Transferring steps:

- Generate bottom clauses according to the relational database using bottom clause positionalization algorithm¹;
- Regard the bottom clauses as propositional logic programs, and make the first-order features as propositional variables;
- ✤ Generate pairs of interpretation transitions.

¹ França, M. V. M., Zaverucha, G., & DAvila Garcez, A. S. (2014). Fast relational learning using bottom clause

propositionalization with artificial neural networks. Machine Learning, 94(1), 81-104.

Example

- ✤ F = {mother(mom1, daughter1), wife(daughter1, husband1), wife(daughter2, husband2)},
- $\mathbf{\bullet} \mathbf{P} = \{ \text{motherInLaw}(\text{mom1}, \text{husband1}) 1 \}$
- $\bullet N = \{motherInLaw(daughter1, husband2)\}.$

Generated bottom clause set (the depth of the variable is set to 1):

Bottom clause	$E_{\perp} = \{ motherInLaw(A, B) :-mother(A, C), wife(C, B); \\ \sim motherInLaw(A, B) :-wife(A, C) \}.$		
Pairs of interpretation	I_1 : mother(A, C), wife(C, B)	J_1 : motherInLaw(A, B)	
	I_2 : wife(A, C)	J ₂ :	

Results

Test the model on the incomplete and mislabelled datasets:

Figure: Mean accuracy of the logic program and the MSE of the predicted Boolean value with respect to different split rates and mislabeling rates of the fission dataset.

Results

Datasets (Complexity)	Model	The split rates			
		10%	20%	50%	100%
Fission (10, 210)	NN-LFIT	1.2, 98.80	0.2, 99.80	0.00,99.92	0.00 ,99.87
	D-LFIT	1.91, 80.45	1.27, 85.33	0.17, 93.13	0.06, 92.89
	LF1T	-, 76.85	-,77.03	-,77.15	- ,100
	JRip	-,79.14	-,78.05	-,80.04	-, 78.47
Mammalian (10, 210)	NN-LFIT	1.3, 96.6	0.4,94.35	0.00,99.89	0.00,99.91
	D-LFIT	1.73, 71.67	1.21,75.9	0.79, 80.09	0.52,82.84
	LF1T	-,76.01	-,76.48	-,76.73	91.56
	JRip	- ,77.84	-,75.44	-,76.41	-, 74.66
Budding (12, 212)	NN-LFIT	ROT	ROT	ROT	ROT
	D-LFIT	1.03, 71.96	0.43,71.39	0.15,70.5	0.09,76.52
	LF1T	ROT	ROT	ROT	ROT
	JRip	-,67.97	-,68.55	-, 67.91	-,68.32
Arabidopsis (15, 215)	NN-LFIT	ROT	ROT	ROT	ROT
	D-LFIT	0.57, 84.35	0.51, 86.83	0.48, 88.56	0.45, 89.70
	LF1T	ROT	ROT	ROT	ROT
	JRip	-, 68.84	-, 69.00	-, 68.79	-,68.67
Mutagenesis (1111, 188)	D-LFIT	77.78	94.44	88.88	83.33
	JRip	58.37	59.46	65.97	66.45
UW-CSE (601, 1614)	D-LFIT	75.00	78.12	78.44	79.44
	JRip	70.18	70.81	73.85	74.35
Alzheimers-amine (1084, 686)	D-LFIT	58.42	60.29	63.24	67.65
	JRip	58.74	57.66	57.14	54.81

ACE (0) and assures (0) on partial datasets with different onlit rates

Table 3 Comparison of the MSE (%) and accuracy (%) on the mislabeled data with different mislabeling rates

Datasets	Model name	The rates of mislabeled data			
		5%	20%	35%	50%
Fission	NN-LFIT	3.25, 96.75	10.56,89.43	15.14, 84.86	17.74,82.25
	D-LFIT	2.23, 92.34	8.53, 87.25	10.89, 84.34	12.08, 84.96
	LFIT	-,77.25	-,77.16	-,77.38	-,77.32
	JRip	- ,78.91	- ,78.54	-,78.55	- ,78.15
Mammalian	NN-LFIT	4.77, 79.72	16,78.11	20.98,79.01	23.20,74.49
	D-LFIT	3.45, 80.00	11.53,78.82	15.74, 80.29	16.35, 86.27
	LF1T	-, 76.72	-,76,73	-,76.62	-,77.32
	JRip	-,74.21	-,74.45	-, 74.43	-,74.00
Budding	NN-LFIT	ROT	ROT	ROT	ROT
	D-LFIT	4.9, 76.42	13.3, 74.28	16.53,73.41	18.21,74.71
	LF1T	ROT	ROT	ROT	ROT
	JRip	- ,67.99	-,67.15	-,66.80	-,66.41
Arabidopsis	NN-LFIT	ROT	ROT	ROT	ROT
	D-LFIT	4.8,81.46	11.83,76.59	15.4 ,70.28	17.35,64.90
	LF1T	ROT	ROT	ROT	ROT
	JRip	-,68.27	-, 67.34	-,66.94	-,66.65
Mutagenesis	D-LFIT	88.89	83.33	88.89	88.89
	JRip	66.49	62.23	62.77	62.23
UW-CSE	D-LFIT	73.49	72.67	73.29	73.29
	JRip	72.80	67.35	66.04	66.23
Alzheimers-amine	D-LFIT	63.24	63.24	60.29	58.83
	JRip	48.35	49.42	49.27	50.87

Comparisons on the incomplete data

Table 2 Comparison of the accuracy (%) of rules obtained by	Model	Datasets	atasets		
CILP++		Mutagenesis	UW_CSE	Alzheimer-amine	
	CILP++	77.72	81.98	78.70	
	D-LFIT	83.33	79.44	67.75	

Comparisons on the mislabeled data

Comparisons on the relational databases

14

- D-LFIT is an inductive logic programming learner, which can learn propositional logic programs from mislabeled data or incomplete data.
- Through adopting the BCP algorithm, we can learn first-order logic programs from relational databases.
- D-LFIT is a robust, fast leaner, which can curriculum learning strategy to learn knowledge from data.
- We will devise more constrains to make the generated logic programs meet destinated formats.
- We will apply the D-LFIT on other dataset such like knowledge graph.

Thanks for your attention!

