
Learning from Interpretation Transitions Using
Differentiable Logic Programming Semantics

1

Kun Gao1, Hanpin Wang1, 2, Yongzhi Cao1, Katsumi Inoue3

1 Peking University
2 Guangzhou University

3 National Institute of Informatics

2021/10/25

222Introduction: the definition of logic programs

Background knowledge
v A normal logic program is a finite set of rules that satisfies the

following form:

where the li’s are literals and h is the head atom. Given a logic
program P, the set of all atoms (ground atoms) in P is called a
Herbrand base and is denoted as BP.

v An interpretation of a logic program is a subset of BP. Given a
normal logic program P and BP = {p1, . . . , pn}, an interpretation
vector is denoted as v = (v1, . . . , vn)T ∈{0,1}n.

333Introduction: the definition of learning task

v Given a propositional logic program P, the immediate
consequence operator TP : 2BP → 2BP is defined as follows:

TP (I) = {head(r) | r ∈ P, body+(r) ⊆ I, body−(r) ∩ I = 0}

The definition of the learning task
v Input: the pairs of interpretation transitions (I, J), where J =TP (I).
v Output: the logic program P.

444Learning steps

Meta-info
Learner

Interpretation
Learner

information extract

555

Normal matrices

Given a normal logic program, we use normal (NOR) matrix to
represent it. The normal matrix of a logic program 𝐌!

"#$ and the
pairs of interpretation vectors meet: 𝒗𝒐 = 𝜃(𝐌!

"#$𝒗𝒊), where the
threshold is defined as follows:

Model: Learning normal matrices

The denominator of the fraction, corresponding the literal
p, is the number of literals in the conjunctive clause with
the least literals that appear in the corresponding rule

Model: Learning normal matrices

6

6

We use a differentiable function ϕ to replace the function θ :

ϕ =
1

1 + e−αx

Figure: The curves of the function θ and 𝜙(𝑥 − 1)

Model: Learning normal matrices

7

7

v We define a differentiable formula to represent the immediate
consequence function TP and the loss function:

penalty term H is the cross-entropy
function

888

Meta-info learner
v Extract the number of non zero elements in every line, denoted as
𝒍𝒑𝒌, from the generated normal matrices.

Interpretation learner

v The number of rules m in a same head variable logic program is
no larger than 𝐶 𝑙(",

*#"
+

.

v For all 𝑘 ∈ [1, 𝐶 𝑙(",
*#"
+

], learn the same head variable
(SHV) matrix representing the 𝑘-th rule in the disjunctive normal
form logic program.

The meta-information:
lp = 4, lq = 2, lr =1.

Model: Connection of two learner

999Model: Learning SHV matrices

v We set multiple trainable matrices 𝑀!
,-. to represent the

different disjunctive normal form rules in the logic program
P.

product t-norm

The denominator of the fraction, corresponding the literal
p, is the number of literals in the corresponding rule

101010Model: Learning SHV matrices

The loss function is:

Constrain the sum of each line
of the SHV matrices to one.

H is the cross-entropy function

(a) A logic program P
(b) Two SHV matrices to represent the

logic prgoram P

Example:

111111Model: Learning first-order logic programs

Transferring steps:

v Generate bottom clauses according to the relational database using
bottom clause positionalization algorithm1;

v Regard the bottom clauses as propositional logic programs, and
make the first-order features as propositional variables;

v Generate pairs of interpretation transitions.

1 França, M. V. M., Zaverucha, G., & DAvila Garcez, A. S. (2014). Fast relational learning using bottom clause

propositionalization with artificial neural networks. Machine Learning, 94(1), 81–104.

121212Model: Learning first-order logic programs

Example
v F = {mother(mom1, daughter1), wife(daughter1, husband1),

wife(daughter2, husband2)},
v P = {motherInLaw(mom1, husband1)1}
v N ={motherInLaw(daughter1, husband2)}.

E⊥ = {motherInLaw(A, B) :−mother(A, C), wife(C, B);
∼ motherInLaw(A, B) :−wife(A, C)}.

𝐼!: mother(A, C), wife(C, B) 𝐽!: motherInLaw(A, B)

𝐼": wife(A, C) 𝐽":

Bottom
clause

Pairs of
interpretation

Generated bottom clause set (the depth of the variable is set to 1):

131313Results

Test the model on the incomplete and mislabelled datasets:

M
SE
(%
)

A
cc
ur
ac
y(
%
)

M
SE
(%
)

A
cc
ur
ac
y(
%
)

Split rates Mislabeling rates

(a) Incomplete data (b) Mislabeled data

Figure: Mean accuracy of the logic program and the MSE of the
predicted Boolean value with respect to different split rates and
mislabeling rates of the fission dataset.

141414Results

Comparisons on the incomplete data Comparisons on the mislabeled data

Comparisons on the relational
databases

151515Conclusion

v D-LFIT is an inductive logic programming learner, which can
learn propositional logic programs from mislabeled data or
incomplete data.

v Through adopting the BCP algorithm, we can learn first-order
logic programs from relational databases.

v D-LFIT is a robust, fast leaner, which can curriculum learning
strategy to learn knowledge from data.

v We will devise more constrains to make the generated logic
programs meet destinated formats.

v We will apply the D-LFIT on other dataset such like knowledge
graph.

Thanks for your attention!

